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Abstract 

Humans are being driven to expand their borders and seize the natural resources of others due 

to their insatiable desire for political and military dominance. They may employ a variety of 

strategies to accomplish this goal including learning about military installations the quantity 

of military personnel stationed there, areas with abundant natural resources, weaknesses of 

authorities that they can take advantage of. Other pressing issues that need to be addressed 

right away include illegal immigration drug smuggling, and the cross-border smuggling of 

other prohibited goods. This manuscript presents an Enhanced Security and Attack Detection 

Framework leveraging Optimized Physics-Informed Neural Networks (PINN-FFEM-IDS) 

respectively. Initially, input data is collected from KDD Cup 1999 dataset After 

preprocessing, the pre-processed data is given to Gazelle Optimization Algorithm (GOA) for 

selecting optimized features. These features are classified by Physics-Informed Neural 

Networks (PINNs) for precise detection of attack types including normal, probe, denial of 

service, remote to local, user to root intrusions. To enhance detection reliability Triangulation 

Topology Aggregation Optimizer (TTAO) fine-tunes the PINN's parameters ensuring 
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superior performance under constrained WSN conditions. The proposed method demonstrates 

substantial improvements in accuracy, precision, network lifetime and reduced false positive 

rate when compared to existing systems such as artificial neural network basis deep learning 

method to forecast Intrusion Detection in WSN (ANN-ID-WSN), deep neural network base 

intrusion identification for WSN (DNN-FID-WSN) and feature fusion ensemble meta-

classifier method depending on recurrent neural network for intelligent network IDS in WSN 

(INS-WSN-DNN) respectively. 

Keywords: Gazelle Optimization Algorithm, Physics-Informed Neural Networks, Trust-based 

Distributed Set Membership Fusion Filtering, Triangulation Topology Aggregation 

Optimizer Algorithm. 

1. Introduction 

WSNs are composed of hierarchically dispersed micro sensor nodes in the field connected by 

multihop wireless communication technologies. The sensor nodes are equipped by 

processing, storage, wireless communication components [1]. Among the things that WSNs 

monitor and collect data about are network condition and data flow [2]. The most dangerous 

routeing assault is called the Sybil attack, which lowers service quality by creating and 

destroying several false identities to launch a malicious attack against the genuine node [3, 4]. 

It is the primary investigates challenge in WSNs, similar to other applications such as 

synchronisation, architecture, quality of service deployment, healthcare, disaster 

management, and calibration [5-7]. Wireless sensor nodes monitor and collect environmental 

data, transmitting it to cluster head for processing through aggregation[8-10].The localisation 

of sensor nodes is necessary for two emerging uses of WSNs: item tracking and traffic 

management [11]. Sensor node location estimate is important for effective routeing, location-

aware services [12]. The location of the sensor determines the usefulness of the data that 

WSN collects. Localisation strategies broadly classified into two groups depend on the 



information needed [13-15]. Range-free strategies, which base location estimates on the 

proximity of several reference nodes, and range-depend methods that depend on known 

angles or distances among nodes to determine their locations [16]. Owing tocheaper hardware 

and computational requirements, range-free algorithms are gradually replacing range-depend 

techniques in WSN localisation. Since the clustering and localisation process estimates node's 

own location by utilising positions of nearby reference nodes, it is well known illustration of 

range-free method [17-19]. Reference nodes' initial coordinates are either computed or hard 

coded during the setup phase [20].  

Despite the growing use of Wireless Sensor Networks (WSNs) in mission-critical 

domains like military, healthcare, and environmental monitoring, ensuring their security 

remains important challenge. These networks are highly susceptible to different sophisticated 

attacks, particularly Sybil and denial-of-service attacks due to their open architecture, 

constrained computational resources, and lack of centralized oversight. Conventional 

Intrusion Detection Systems struggle to maintain high detection accuracy under these 

dynamic and resource-limited conditions, often suffering from high false positive rates, poor 

attack localization and inadequate adaptability to evolving threats. Furthermore many 

existing approaches depend on static feature selection and lack integration with the physical 

principles governing WSN behavior, limiting their generalizability and effectiveness. Manual 

or heuristic-based detection methods are often inefficient and computationally intensive, 

leading to delayed threat responses and compromised data integrity. Therefore there is an 

urgent need for a robust, intelligent and adaptive IDS that exactly detect, categorize multiple 

kinds of attacks in real time, even under noisy and sparse data conditions. 

The novelty of the lies in innovative integration of Physics-Informed Neural Networks 

with a robust multi stage optimization pipe line for intelligent intrusion detection in WSN. 

The synergy continues with the Triangulation Topology Aggregation Optimizer which fine 



tunes the PINN parameters to adaptively detect diverse cyberattacks including Sybil DoS and 

probe attacks with higher accuracy and reduced false positives. This bio inspired physics 

informed architecture represents a novel convergence of domain knowledge and machine 

learning advancing the field of secure real time and energy efficient intrusion detection for 

dynamic WSN environments.  

Main contribution of this work,  

 To address the challenges of manuscript presents an Enhanced Security and Attack 

Detection Framework leveraging Optimized Physics-Informed Neural Networks 

PINN-FFEM-IDSis proposed. 

 The TDSMFF enhances data quality by removing noise and normalizing input, while 

the Gazelle Optimization Algorithm (GOA) selects the most relevant features. 

 This framework synergizes the physical modeling capability of PINNs with optimized 

feature selection and hierarchical localization to enhance detection accuracy, 

minimize false positives, extend network lifetime. 

 The TTAO is employed to fine-tune weights and biases of PINN, ensuring efficient 

and scalable threat detection under dynamic WSN conditions. 

Rest of this manuscript is arranged as: part 2 explains literature survey, part 3 deliberates 

proposed method, part 4 presents results with discussion, part 5 conclusion. 

2. Literature review 

Several investigates previouslypresented in the literature related to IDS for WSN depend 

upon data mining, some recent researches are reviewed here, 

Singh,et al., [21] have suggested ANN basis deep learning method to forecast Intrusion 

Detection (ID) inWSN. The suggested method uses ANN with complete connectivity and 

feed-forward learning in a deep learning predict count of k-barriers with high accuracy for 

quick ID and prevention.With 4 potential attribute size of circular area, sensors sensing level 



and unique sensorsdeliverywhere trained and assessed the feed-forward ANN method.It 

employs critical features such as sensor ranges and area, resulting in high performance. The 

model employs only a few features, which may not encompass all elements influencing 

intrusion detection.  

Gowdhaman, et al., [22] have suggested DNN-base intrusion identification for WSN.The 

better features from data were selected with a cross-correlation method, and selected 

parameters employed building block of DNN architecture to appear for intrusion. Findings 

demonstrated introduced DNN detects attacks effectively and outperforms Support Vector 

Machine. DNNs can reduce false positives, resulting in more accurate intrusion detection. It 

may not scale well for large deployments. The ensemble approach complicates the model 

making it difficult to execute and maintain.  

Ravi, et al., [23] have presented feature fusion ensemble meta-classifier technique 

depending on RNN for intelligent network IDS in WSN. An E2E model utilising DL-base 

recurrent models for network attack detection and categorization. By extracting features from 

hidden layers of recurrent methods, the suggested model finds best features by using kernel-

depend principal component analysis feature selection technique. Over time, model may react 

to new types of assaults and network behaviour changes, increasing its robustness and 

accuracy. Deep RNNs were prone to overfitting, especially if they were not sufficiently 

regularised or have a short training dataset.  

Khedr, et al., [24] have presented Time Synchronized Multivariate Regressive 

Convolution Deep Neural Network for Sinkhole Attack identification in WSN. To minimise 

detection delays, the TSMR-CDNN technique combines reverse time synchronisation for its 

ability to offer accurate clock offsets and skews. By adjusting the threshold value, the 

Broken-stick regression approach was used to analyse multivariate data, including energy and 

clock variables, to improve detection skills. The method effectively manages fluctuations in 



clock skews, which were typical in WSNs. Obtaining perfect time synchronisation in WSNs 

can be difficult, particularly in dynamic or large-scale networks. 

Subbiahetal.,et al., [25] have presented Boruta feature selecting method and grid search 

RF are coupled to identify intrusions in wireless sensor networks. Effectiveness of BFS-

GSRF was evaluated in comparison to ML techniques, such as Linear Discriminant Analysis, 

Classificationand Regression Tree. The suggested technique was evaluated on Network 

Security Laboratory Knowledge on Discovery database. Boruta selects only the most 

important features, increasing the Random Forest model's accuracy in identifying intrusions. 

Borate’s iterative feature selection approach can extend the model creation phase and 

increase its complexity. 

Darvishi.,et al., [26] have presented Deep Recurrent Graph Convolutional Structure in 

Digital Twins. The suggested approach addresses the issue of sensor error identification, 

isolation, accommodation in huge-size network system. It suggested a deep recurrent graph 

convolutional structure-dependent technique for sensor validation was presented that 

concurrently learns the network structure and spatiotemporal interdependencies.Effectively 

detects and isolates sensor faults, increasing overall system dependability. Difficult to create 

and implement; requires extensive skill. 

Darvishi, et al., [27] have presented a ML structure for sensor fault recognition, 

accommodationand isolationin digital twins.To create dependable digital twins, the proposed 

approach seeks to instantly detect abnormalities in sensor readings, identify the problematic 

ones, and accommodate them with appropriate approximated data. It provided higher 

precision and high computational time. But inaccurately identify or fail to detect defects, 

resulting in potential inaccuracies. Comparison table of literature review is displayed in Table 

1. 

Table 1: Comparison Table of Literature Survey 



Author Methods objective Merits Demerits 

Singh et al., 

[21] 

To forecast 

intrusion 

detection in WSN 

using ANN. 

Fully connected feed-

forward ANN with 

limited input attributes. 

It provides 

higher accuracy 

It attains 

low 

sensitivity 

Gowdhaman 

et al., [22] 

To identify 

intrusions in 

WSN using deep 

learning. 

DNN with cross-

correlation-based 

feature selection. 

It provides 

higher precision 

It attains 

low 

sensitivity 

Ravi et al., 

[23] 

To detect and 

classify attacks in 

WSN using deep 

RNN. 

Feature fusion 

ensemble with RNN 

and kernel PCA. 

It provides low 

error rate 

 

It attains 

low 

precision 

Khedr et al., 

[24] 

To detect 

sinkhole attacks 

in WSN via time-

synchronized 

deep learning. 

TSMR-CDNN with 

broken-stick regression 

and reverse time sync. 

It provides low 

error rate 

reduction 

 

It attains 

low 

precision. 

 

Subbiah et 

al., [25] 

To detect 

intrusions in 

WSN using 

feature selection 

and ensemble 

learning. 

Boruta feature selection 

with grid search 

random forest. 

It attains higher 

accuracy 

It provides 

low recall 



Darvishi et 

al., [26] 

To detect and 

isolate sensor 

faults in large-

scale networks. 

Deep recurrent graph 

convolutional structure 

in Digital Twins. 

It attains low 

residual 

It provides 

low network 

Darvishi et 

al., [27] 

To recognize and 

accommodate 

digital twins. 

Machine learning 

framework for real-time 

fault handling. 

It provides 

higher FI-

measure 

It provides 

low network 

lifetime. 

3. Proposed Methodology 

This section, PINN-FFEM-IDS is proposed. These phases endure main 5 processes like 

Network model, feature selection, data acquisition, pre-processing, classification, 

optimization. The network model faces risks from wormhole and assumes uniform 

capabilities among legitimate nodes, adopting hierarchical clustering to conserve energy and 

extend network longevity. The KDD Cup 1999 dataset is utilized benchmark for IDS. Data 

normalisation is achieved via the TDSMFF technique. The Gazelle Optimisation Algorithm is 

used here to choose the best subsets of characteristics for discriminating between different 

sorts of attacks in the dataset. The final outcomes display that PINN-based technique 

optimised by TTAO The following figure 1 shows block diagram of PINN-FFEM-IDS 

model. 
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Figure 1: Block diagram of PINN-FFEM-IDS 

3.1 Network Model 

The simulated network includes sink, sensor, cluster head, attacker nodes shown. Throughout 

the system the sensor nodes have a tendency to cluster together. Each cluster selects a cluster 

head node to serve hub for cluster while delivering data to beacon nodes and base station. 

Using an optimisation technique depend on fitness function, beacon nodes determine the best 

routeing path. Through the creation of node clusters with one cluster head for allgroup the 

localisation system provides an exact position, location for sensor nodes. Periodically, sensor 

nodes provide system with an updated location. 

3.1.1 Cluster formation with data aggregation 

By grouping collection of sensors into clusters, network's resilience and power efficiency can 

be improved. Groups of related devices comprise sensor nodes inside the network. The sensor 

nodes that comprise cluster as a whole collect data, forward it to cluster coordinator. 

 The sensor node's signal quality as it was received  



 The amount of energy left in the node prior to activation 

 The distance vector protocol's minimum required to reach base station. The distance 

vector method is utilized to calculate distance G among any two sensor nodes, as 

illustrated below equation (1). 

22 )()( jiji rrvvG 
       (1) 

Here, jandi  denotes the nodes, the coordinates are r  and v , respectively. The cluster head 

is probably determined by calculating the distance between any nodes with a short distance 

from the base stations. The energy transmission cost for k-bit data transfer over the G  

distance and the oG threshold distance is provided as in equation (2) 
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Where, for single-bit data transmission, 
HYF denotes transmitted energy, kF  signifies 

received energy, fF signifies power discarded in transmitter. Channel-coding, filtering, 

modulation, and signal spreading all affect how much energy is lost. Defined a h length data 

transfer, the threshold distance for transmission oG  is defined by equation (3) 
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The energy used by receiving node to receive message in k-bits is shown in equation (4) 

ffPY FfF )(         (4) 

Where, )( fPYF  denotes the energy used by the receiving node; hF  represents the power 

discarded in the receiver and  nF  power discarded in number of nodes. 

 

 



3.1.2 Localization Techniques 

 The localisation process is used in many WSN applications to locate target by comparing 

signal intensities of transmitters,receivers that have previously been installed in the region of 

interest. The precise location of WSN is assessed by distance vector hop localisation method 

and received signal strength indicator. To calculate coordinates of cluster heads,sensor nodes 

utilizing beacon nodes, distance vector localisation process is necessary and minimum hop 

count provided by following equation (5) 
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Here, LC denotes average distance hop for anchor node, v  and r  are the coordinate nodes, 

jandi represents the nodes and k  is the data transmission node. After transmitting its data, 

the anchor node calculates the hop-size. It provided hop-size information, distance calculated 

among sensor node, anchor is given by equation (6) 

rfiQQf krCiLG 
        (6)

 

Here, QfG denotes sensor node, anchor, QL denotes position of anchor  , iCi  is the area 

between the anchor and indeterminate nodes, k  is the location of unknown node, Q  spot of 

unidentified node. To make the system linear, can obtain set of expressions by subtracting 

from first equations, as shown in following equation (7). 

  .''
1

DXXXW


         (7) 

Here,W is represents achieving node localization,  XX '  denotes real distances among one-

hop neighbour nodes, leveraging such distances, 'X represents the location of the node, D  

distances for precise localization in massive-scale WSN.Node localisation can be achieved in 

an easy and affordable way, both in terms of hardware and software. To achieve more 



accurate localisation in large-scale WSNs, distance vector hop approach, however, 

completely omits calculating actual distances among one-hop neighbour nodes. 

3.2 Data Acquisition 

The input data are collected from KDD 99 dataset [28]. Every instance in the KDD 99 dataset 

has features that belong to a certain type of network data. Attack or normal are the labels 

assigned to each class. There are five primary classifications in the KDD 99 dataset such as 

Normal, DoS, User to Root, User to Root, Remote to User, Probing.  Training uses 70% of 

dataset testing uses 15% and validation uses 15%.The KDD 99 dataset is listed in the table 2. 

Table 2: Feature from KDD 99 Dataset 

KDD 99Features Num root 

Protocol type Su_attempted 

Service Wrong fragment 

Flag urgent 

Src bytes hot 

Dst bytes Num failed logins 

Land 

 

Logged in 

3.3Pre-processing using Trust-based Distributed Set-Membership Fusion Filtering 

In this step, TDSMFF [29] is utilized to data normalization. By including trust information 

across nodes, the TDSMFF technique improves distributed systems' durability, resulting in 

increased accuracy, resilience against malicious or unreliable nodes, overall efficiency in set-

membership filtering operations. Iterative adversarial training aims to lessen negative effects 

of adversarial samples on learning process. It is given in equation (8),  
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Here sml ,
ˆ signifies local estimation of sm, on sensor r ,

sm
P

,
 signifies filter parameters 1|

ˆ
ssl  

denotes Vectors depend on user mobility, channel multi-path components, they are 

continuously recomputed with channel coherence time. It is given in equation (9) 
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The nonlinear functions sm, of data in Taylor series expansion formula are linearized. Z

signifies metric of distance among  m , s 2 input instances: adversarial version of input S , 

original input P .The node remove ellipsoidal center data, where loss function is definite sum 

of distance error square. In this stage, DSMFF is used to normalize data, remove noise, and 

improve quality of input data such that remain data is correct is given in equation (10), 
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Where jl  denotes I  sample, ,d  signifies centroid linked to cluster, s signifies ellipsoidal 

shapes. The TDSMFF normalized input data. The pre-processed output is given to feature 

selection stage.  

3.4 Gazelle Optimization Algorithm for features selection 

The feature selection utilizing GOA [30] is discussed.The GOA offers several advantages for 

complex optimization tasks. Inspired by gazelles’ natural behavior, it combines exploration 

and exploitation effectively, allowing it to escape local optima and converge toward global 

solutions. GOA demonstrates strong adaptability across diverse problem spaces and ensures 

fast convergence with minimal parameter tuning. Its lightweight structure supports 

computational efficiency, making it ideal for high-dimensional, nonlinear, or multi-objective 

optimization problems. GOA also shows robust performance in real-world engineering and 

data-driven applications. The stepwise procedures of GOA for feature selection are presented 

below. 



Step 1: Initialization 

The population generated stochastically among the given issue’s upper bound  bU and lower 

bound  bL  based on equation (11), 
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Where w represented the current candidate population, baw ,  represented the positioning of thb

dimension of the tha population, m  denotes whole candidate population. 

Step 2: Random Generation 

Input parameters are made at randomly. The optimal progressive value is chosen depend 

upon specific hyper parameter conditions. 

Step 3: Fitness function 

Initialized parameters are depending upon resolute current best position. It is shown in 

equation (12). 

][ featuresoptimalselectingfunctionFitness 
        (12)    

Step 4: Brownian motion
 

A stochastic process where the standard Brownian motion appears at a point y and the step 

size is determined by Normal (Gaussian) probability distribution using zero  0 mean and 

unit variance  12  using equation (13), 
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Step 5: Levy flight 

Itis a random walk that uses Levy distribution that shows power-law tai. Using the Levy 

distribution (power-law tail), levy flight is represented based on the following equation (14) 
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Where  represented distribution index manages scale properties of motion, and 

represented unit of scale.In this case, y denotes scale unit,  signifies distribution index that 

controls motion. The algorithm provided by is used by GOA to produce stable Levy motion. 

The definitions of the variables y , , and   are as follows: y  has normal distribution by 

mean 0, variance  2 y ,  is set to 1.5. 

Step 6: Exploitation Phase 

During exploitation phase, gazelles are observed grazing calmly in absence of predators, 

alternatively, predators are actively pursuing the gazelles. This behavior is characterized by 

Brownian motion, encompassing both uniform and controlled phases that effectively cover 

nearby regions. The Exploitation phase can be mathematically depicted using the equation 

(15) 
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Here 1



mG means the next iteration’s solution, mG


 means the current iteration’s solution, t  

expresses gazelles grazing speed, BS


 random number vectors of the Brownian motion, 


S  

uniform random numbers vector in [0,1]. 

Step 7: Explorationphase 

The Exploration phase enhances the search capabilities in optimization problems. When a 

gazelle spots a predator, it instinctively runs, triggering the predator to give chase. Two runs 

are denoted through sudden direction change, this can be denoted as . The character of 

gazelle when it spots predator is mathematically expressed equation (16) 
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Here   represents the top speed of the gazelle, LS


represents random numbers vector 

depended on Levy distributions. mG


denotes variable that controls predator’s movement. 

Step 8:Termination  

In this step, GOA completes, best solution obtained through each process iterations returned 

as output. If all the processes are completed to select the 12 features are selected, it is shown 

in table 4. Then, selected features are fed to classification phase. 

3.5Attack detection using Physics-Informed Neural Networks  

In this section PINN [31] is used to classifying the attacks normal, denial attack, remote to 

local attack, probe attack. Neural networks with physical knowledge can handle issues that 

are characterised by sparse data or noisy experiment observations. Deploying deep learning 

and optimization in lightweight WSN nodes is achieved through a hierarchical architecture. 

Figure 2 shows the architecture diagram of PINN. 
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Figure 2: Architecture diagram of PINN 



Sensor nodes handle simple sensing, while cluster heads perform complex tasks like 

GOA-based feature selection and PINN-based attack detection. PINNs are also known as 

neural networks for supervised learning issues because they may operate on known data 

while respecting any given physical law represented by general nonlinear partial differential 

equations (17). 





inxxgxvD

inxxkxvE

)())((

)());(( 
                                           (17) 

  Here, E denotes the domain function;   is its boundary; v stands for the unknown solution; 

 is the physics-related parameter, k  for the function defining the problem's data, and E  for 

the nonlinear differential operator. Here, kdxxx );1(,.....,1[:  denotes space-time coordinate 

vector. Lastly, it is conceivable to designate D  representing boundary conditions relevant to 

problem and g denotes boundary function. The maximum pooling method was applied 

equation (18) 

)()(ˆ xvxv            (18)  

Here, )(xv is produced through the computational prediction of neural network, which is 

parameterized by set of parameters and a neural network approximation realised with   is 

indicated by v̂ .In this situation, the neural network (NN) has to learn how to approximate 

the differential equations in (19). 

))()()((minarg 


databDDDD LLL         (19)  

Here, 


minarg denotes the activation functions, 
DL  represents the hidden layers, 

D is the 

softmax function. PINNs can be considered supervised learning methodologies for inverse 

problems or when some physical properties are derived from potentially noisy data.A general 

L -layer deep neural network can be expressed as the composition of L  functions; 



indicates the set of parameters for the thi  layer and 
DL  are state variables. A following 

equation (20) is used to classify the attacks.  

)(......)( 11 zkkkxv LL           (20)  

Where the layer composition denoted by , 
Lk is to be understood as )(...... 11 zkkk LL  

 and 

each is specified on two inner product spaces. Finally PINN detects the attacks likes’normal, 

remote to local attack, user to root attack, probe attack, denial attack. Owing to its pertinence, 

convenience, AI-dependent optimization method is considering in PINN classifier. Here, 

TTAO is used to optimize PINN. Here, TTAO is used for tuning weight, bias parameter of 

PINN. 

3.6 Optimization utilizing Triangulation Topology Aggregation Optimizer 

The weights parameter D and L of TCRMGCN is enhanced utilizing TriangulationTopology 

Aggregation Optimizer (TTAO) [32]. In the proposed TTAO method four agents use similar 

triangles as fundamental evolutionary units to produce similar triangles of different sizes. 

Initially, TTAO creates equal dispersing populace to enhance parameter of PINN. The 

important key is enhanced utilizing TTAO procedure linked flowchart is presented in Figure 

2. 

Step 1:Initialization 

The population size and variable dimension are two factors that are being examined there. 

Each vertex in triangle topological unit signifies search agent in search agent hierarchy. 

Created for each agent is given in equation (21), 

  ALALAVSG j


 01,                                                                  

(21) 

Where, j denotes positive integer value, 1,jM denotes initial search individual in 
thj

triangular topological unit, AV


denotes upper bound, AL


implies lower bound. 

 



Step 2: Random generation 

Input parameters made at randomly. Best fitness values are selected based upon clear hyper 

parameter situation.  

Step 3: Fitness Function 

To generate random solution, initialized values are used. It is assessed for optimizing weight 

parameter andE  of detection of cyber-attacks on autonomous vehicles utilizing parameter 

optimization value. It is shown in equation (22), 

( )Fitness Function optimize Dand L
       (22)  

Where, D is used to increasing the accuracy D and L is used to decreasing the false positive 

rate. 

Step 4: Generic Aggregation D  

Information is obtained from respectable individuals in various triangular units, new, 

practical solutions are produced. The improved two-vertex interaction produces newly 

created individual is shown in equation (23), 

  s

bestands

s

bestj

s

newj YsEYpY ,4,4

1

1, 1  
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(23)

 

Where,  1,0 denotes random number 
4p is 

ths iteration, 
s

bestjY ,


and

s

bestandsY ,


signifies best 

individual for unit, arbitrarily selected unit j , 
1

1,

s

newjY


signifies optimum or suboptimal search 

agent. 

Step 5: Local Aggregation L  

At this time, triangular topological units aggregate internally. After comprehending previous 

step, triangular topology was briefly created by 2 group vertices with high fitness values and 

people with either updated ideal or low fitness, respectively. 
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Figure3: Flowchart of TTAO for enhancing PINN 

In a certain location, each group is re-examined using each topological triangle unit is given 

in equation (24), Figure3 
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Where, 
1

2,

s

newjY


denotes optimum or suboptimal search agent, 
s

bestjY ,


signifies arbitrarily chosen 

unit,  denotes decreasing value is used to change the aggregate scope size. A triangle 

network topology's improved routing pathways can lower latency and enhance network 

performance in general. 

Step 6:Termination 

The weight parameter andE from PINN are optimized using support of TTAO process will 

repeat step 3 iteratively fulfil halting criteria 1GG  is satisfied. The ERR-EFIGNN 

method effectively detects the attacks with higher accuracy, lower false positive rate. 

4. Result with discussion 

The stimulation results of ERR-EFIGNN are discussed. The simulation is executed in i3-

6100U CPU @ 2.30 GHz with 4 GB of RAM on MATLAB R2016a utilizing KDD’99 



dataset. The performance metrics includes accuracy, recall, computational time, precision, 

Data uploading, retrieval phases, false-positive rate, Localization error analysis beacon nodes, 

lifetime of network, residual energy are examined. Obtained results of ERR-EFIGNN 

technique are analyzed with existing likes Artificial Neural Network depend intrusion 

detection in WSN (ANN-ID-WSN), Deep Neural Network intrusion detection scheme to 

forecast intrusion detection in WSN (DNN-FID-WSN), and An intelligent network ID 

technique based on RDL-depend feature fusion ensemble meta-classifier (RDL-WSN-DNN) 

techniques.Simulation setup for network method is given in table 5. 

4.1 Performance Measures 

Performance metrics are used to evaluate proposed technique's efficiency, metrics such as 

accuracy, precision, recall, Localization error analysis beacon nodes, computational time, 

Data uploading and retrieval phases, lifetime of network, false-positive rate, residual energy. 

4.1.1 Accuracy 

The percentage of correct predictions, total recommendations classifier made are computed 

by this evaluation statistic. It is given in equation (25) 

FNFPTNTP

TNTP
Accuracy






         
(25)

 

Here, TN denotes true negative, TP represents true positive, FP signifies false negative, FN  

denotes false negative. 

4.1.2 Precision 

It is a measure of obtained data's degree of accuracy. It is proportion of "true positives" to 

each "positive instances," where "true positives" denotes exactly returned outcomes. It is 

shown in equation (26), 
 

 

FPTP
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ecision


Pr

          (26)  

 



4.1.3 False positive rate 

The number of wrongly labelled positive cases as negative is called as false positive rate. The 

probability that model mistakenly classify negative event as positive is measured. 

TNFP

FP
FPR




        (27) 

4.1.4 Residual energy 

The amount of energy remaining an after a exact time. It is an important indicator for 

calculating longevity, efficiency of network. Higher residual energy shows that the node can 

run for an extended period of time, which is critical in situations where nodes are impossible 

to replace or recharge. 

ELETEC         (28) 

Where, ET  is the total energy consumed by node, EC denotes energy  consumed to current 

time, EL  represents the life time energy. 

4.1.5 Lifetime of the network 

A network's lifetime refers to the amount of time it remains operational and capable of 

performing its intended functions. In the context of WSNs and other similar networks, it 

frequently refers to the time it takes for the first node or a critical number of nodes to run out 

of energy and no longer is able to perform network activities. 

)()()( NDeadNtotalNalive       (29) 

4.2 Performance analysis

 
Fig 4-7 portrays experimental results of PINN-LAD-WSN technique. The PINN-LAD-

WSNtechnique is compared with existing ANN-ID-WSN, DNN-FID-WSN, INS-WSN-

DNNmethod. 



 

Figure 4: Performance Analysis of Data uploading and retrieval phases 

Figure 4 shows data uploading and retrieval phase’s analysis.The graph which shows data 

sizes ranging from 5 MB to 35 MB shows the relationship between data size and reaction 

time for both uploading and retrieving data. The uploading data response time increases 

gradually, from slightly less than 3 seconds for 5 MB to roughly 4.5 seconds for 35 MB. As 

data size increases, this trend points to a nonlinear increase in response time. This suggests 

that, in general, uploading data takes longer than retrieving data and grows faster with larger 

data quantities. 

Table 3: Performance Analysis of Accuracy 

Accuracy (%) 

Techniques Normal 

Denial 

attack 

Probe 

attack 

Remote to 

local attack 

User to root 

attack 

INS-WSN-DNN 90.26 84.27 81.24 82.32 84.16 

ANN-ID-WSN 70.36 67.44 56.37 60.44 73.25 

DNN-FID-WSN 67.37 73.45 65.56 62.33 70.24 

PINN-LAD- 95.34 93.56 97.39 95.77 96.38 



WSN(Proposed) 

Table 3 Performance analysis ofAccuracy.The number of cases with exact predictions out 

of all the instances was used to calculate the accuracy. The precision was indicated by the 

positive prediction value. The number of positive samples compared to those predicted to be 

positive was used to calculate the accuracy. Here, PINN-LAD-WSN method attains8.55%, 

7.43% and 6.62% higher accuracy for normal; 8.55%, 7.43%,6.62% higher accuracy for 

denial attack; 26.35%, 31.23%, 30.62% greater accuracy for probe attack; 7.55%, 8.36% and 

28.32% higher accuracy for remote to local attack;7.55%, 8.36% and 7.32% greater accuracy 

for user to root attack are analysed with existing method such as ANN-ID-WSN, DNN-FID-

WSN, INS-WSN-DNN. 

Figure 5shows localization error analysis. The graph shows how adding more beacon 

nodes affects the percentage of localisation errors in two distinct circumstances Data upload 

and Data retrieval. This suggests that increasing beacon nodes can enhance accuracy in the 

data upload situation by lowering the localisation error. This shows that more beacon nodes 

are beneficial for data retrieval scenarios as fewer localisation errors are consistently 

achieved across the spectrum. 

 

Figure 5: Performance Analysis of Localization error 

 

 



Table 4: False positive rate analysis 

False positive rate (%) 

Techniques Normal 

Denial 

attack 

Probe 

attack 

Remote to 

local attack 

User to root 

attack 

PINN-LAD-

WSN(proposed) 

98.26 95.45 97.57 93.70 95.38 

ANN-ID-WSN 68.27 72.19 74.27 80.28 76.10 

DNN-FID-

WSN 

67.37 80.27 84.26 73.54 80.38 

INS-WSN-

DNN 

78.38 69.20 78.28 65.38 71.20 

Table 4 shows Performance Analysis of false positive rate.It determines the percentage of 

non-attack cases that are mistakenly categorised as attacks. A larger false positive rate 

suggests that there is a greater chance of mistaking routine actions for harmful activity, which 

could result in pointless alerts or the waste of resources in the reaction.Here, PINN-LAD-

WSN method attains8.40%, 7.49% and 6.15% higher false positive rate for normal: 6.15%, 

6.53% and 5.41% higher false positive rate for denial attack; 7.39%, 8.63% and 6.56% higher 

false positive rate for probe attack; 8.53%, 7.72% and 6.43% higher false positive rate for 

remote to local attack; 7.55%, 6.43% and 6.12% higher false positive rate for user to root 

attack are analysed with existing methods such as ANN-ID-WSN, DNN-FID-WSN, INS-

WSN-DNN. 



 

Figure 6: Life time of network analysis 

Fig 6 shows life time of network analysis.The amount of time that a network can function 

normally before major nodes start to malfunction as a result of running out of energy is 

referred to as the network lifetime. Here, PINN-LAD-WSN method attains7.40%, 6.49% and 

5.15% higher life time of the network for normal: 7.15%, 8.53% and 9.41% higher life time 

of the network for denial attack; 6.39%, 7.63% and 8.56% higher life time of the network for 

probe attack; 7.53%, 7.72% and 7.43% higher life time of the network for remote to local 

attack; 6.55%, 6.43% and 7.12% higher life time of the network for user to root attack are 

analysed with existing method such as ANN-ID-WSN, DNN-FID-WSN and INS-WSN-

DNN. 

Fig 7 portrays residual energy analysis. The energy or capacity that sensor nodes have left 

over after completing operations like detecting, processing, and communication is referred to 

as residual energy. For the network to be reliable and long-lasting, nodes must be able to 

operate for longer periods of time before needing to be recharged or replaced. This is shown 

by more residual energy. Here, PINN-LAD-WSN method attains7.40%, 7.49% and 6.15% 

lower residual energy for normal: 8.15%, 7.53% and 5.41% lower residual energy for denial 

attack; 23.39%, 18.63% and 26.56% lower residual energy for probe attack; 8.53%, 7.72% 

and 7.43% lower residual energy for remote to local attack; 7.55%, 6.43% and 5.12% lower 



residual energy for user to root attack are analysed with existing method such as ANN-ID-

WSN, DNN-FID-WSN, INS-WSN-DNN. 

 

Figure 7: Residual energy analysis 

Table 5: Performance Analysis of Precision 

Precision (%)  

Techniques Normal Denial attack Probe attack 

Remote to 

local attack 

User to root 

attack 

ANN-ID-WSN 87.27 78.30 77.55 88.28 75.16 

DNN-FID-

WSN 

77.22 87.56 86.25 75.27 86.25 

INS-WSN-

DNN 

87.66 87.45 77.26 68.59 78.25 

PINN-LAD-

WSN(proposed) 

98.66 97.45 98.26 97.59 98.25 

Table 5 Performance analysis of precision. Each bar shows the precision score obtained 

by a given model or method for classifying ragas. Determine which model or method has the 

highest precision for a certain classification challenge using the graph. Here, PINN-LAD-

WSN method attains6.40%, 7.49% and 5.15% greater accuracy for normal, 5.15%, 6.53%, 



7.41% higher precision for denial attack; 6.39%, 5.63%, 6.56% greaterprecision for probe 

attack; 7.53%, 7.72% and 8.43% higher precision for remote to local attack; 7.55%, 8.43% 

and 6.12% higher precision for user to root attack are analysed with existing methods such as 

ANN-ID-WSN, DNN-FID-WSN, INS-WSN-DNN. 

4.3 Computational complexity 

The time complexity during fitness assessment and maximum iterations, Maxgen , number of 

objectives, f  population size, Popsize  is  popsizefMaxgenP  . The amount of time 

needed to initialize population is  fpopsizeP  . The TTAO necessitates   popsizesfP   

time for archive updates in non dominated solution, parameter  signifies best search agents. 

Overall time complexity is   LspopsizefMaxgenP  , The complexity of space 

through population development in memory necessitates  fpopsizeP  time. Until process 

reaches maximum iterations, fitness calculation, archive update repeat. The TTAO and N

input is  3NP . The PINN-LAD-WSN Optimized with TTAO is  popsizefMaxgenNO 3

Figure 8 portrays computational complexity analysis. 

 

Figure 8: Computational Complexity analysis 



Figure 8 portrays computational complexity analysis. The PINN-LAD-WSN techniques 

increase memory utilization and CPU operation time linearly.  The time complexity of PINN-

LAD-WSN technique portrays lower than existing method such as ANN-ID-WSN, DNN-

FID-WSN, INS-WSN-DNN. 

4.4 Discussion 

The MLPANN method attains a higher detection accuracy of 99.62% when utilizing 

benchmark dataset for WSN-DS. The suggested method has the best average detection for a 

number of suspicious nodes, as confirmed by its efficacy in identifying and localizing 

different attack classes. Since it successfully identifies and locates many attack kinds, this 

method is unique. The proposed PINN-FFEM-IDS is a revolutionary approach that can 

measure security, performance for optimal region coverage. It is developed for WSNs with 

hierarchical architecture homogeneous, heterogeneous sensor nodes. The dataset are utilized 

to evaluate proposed system accuracy in detecting, localizing different types of attacks. 

Malicious nodes beacons and sensors were used in a tiered manner to simulate target field. To 

improve accuracy of malicious node identification and localization in WSNs a number of 

strategies are recommended. More attack types and strategies are added in this proposed 

model which builds on this work. 

5. Conclusion 

In this work, a novel attack detection and security enhancement framework, PINN-FFEM-

IDS, is proposed to address multi-class intrusion threats in Wireless Sensor Networks 

(WSNs). By integrating Physics-Informed Neural Networks (PINNs) with TDSMFF and 

Gazelle Optimization Algorithm (GOA), the framework ensures robust data normalization 

and optimal feature selection critical for accurate threat classification. Further, the inclusion 

of the Triangulation Topology Aggregation Optimizer (TTAO) for hyperparameter tuning of 

the PINN significantly enhances detection accuracy and reduces false positives. Experimental 



validation using the KDD Cup 1999 dataset confirms that PINN-FFEM-IDS model 

outperforms existing models such as ANN-ID-WSN, DNN-FID-WSN, and INS-WSN-DNN 

across multiple attack categories. The proposed method achieved up to 26.35% higher 

accuracy for probe attacks, 8.55% higher for denial attacks, and substantial improvements in 

residual energy and network lifetime, demonstrating its effectiveness in dynamic, resource-

constrained WSN environments. Future enhancements will focus on developing a lightweight 

adaptive PINN variant with interpretable layers, integrating cross-layer optimization 

strategies, and deploying the framework in real-time IoT-WSN testbeds for resilient cyber-

threat mitigation and autonomous anomaly localization.  
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